

ANALYSIS OF FACTORS INFLUENCING THE INTEREST OF FARMERS IN RICEFIELDS IN THE USAGE OF ORGANIC AND INORGANIC FERTILIZERS

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI MINAT PETANI PADI SAWAH TERHADAP PENGGUNAAN PUPUK ORGANIK DAN ANORGANIK

Imelia Princess¹, Najmi Alif Wardana¹, Zaky Abd Aziz¹, Rama Ramdani¹, Ihsan Givani¹

¹ Agribusiness Study Program, Faculty of Agriculture, University of Garut
Jl. Raya Samarang No. 52A Tel. Fax. (0262) 544214 Targong Garut 44151

Correspondence: fournitaagustina@gmail.com

Submitted: 16th March 2023; Revised: 13th October 2024; Published: 28th February 2025

ABSTRACT

Lowland rice farming has always been an interesting topic to study because it is a strategic staple food source in Indonesia. This study aims to determine the factors that influence rice farmers' interest in using organic and inorganic fertilizers. This study was conducted in Rancabango Village, Tarogong Kaler District, Garut Regency, from December 2022 to January 2023. This study used a quantitative correlation method with multiple linear regression analysis techniques. The sampling method in this study used a simple random sampling technique by taking 30 samples of rice farmers. The results revealed that the factors that influence the interest in using organic and inorganic fertilizers in Rancabango Village together are land area, experience, income, assistance, and education. However, partially, land area is a very influential variable.

Keywords: Farmer, fertilizer, interest, inorganic, organic

ABSTRAK

Pertanian padi sawah selalu menarik untuk diteliti karena merupakan sumber pangan pokok yang strategis di Indonesia. Penelitian ini bertujuan untuk mengetahui faktor-faktor yang mempengaruhi minat petani padi dalam penggunaan pupuk organik dan anorganik. Penelitian ini dilaksanakan di Desa Rancabango, Kecamatan Tarogong Kaler, Kabupaten Garut dari bulan Desember 2022 sampai Januari 2023. Penelitian ini menggunakan metode kuantitatif korelasi dengan teknik analisis regresi linier berganda. Metode pengambilan sampel dalam penelitian ini menggunakan teknik *simple random sampling* dengan mengambil 30 sampel yaitu para petani padi. Hasil penelitian mengungkapkan bahwa faktor-faktor yang mempengaruhi minat penggunaan pupuk organik dan anorganik di Desa Rancabango secara bersama-sama adalah luas lahan, pengalaman, pendapatan, bantuan dan pendidikan. Namun secara parsial, luas lahan merupakan variabel yang sangat berpengaruh.

Kata Kunci: anorganik, organik, pupuk, minat

INTRODUCTION

Indonesia is a country that is known as a country with an agricultural focus. Most of the public in Indonesia

works in the agricultural sector, with the wrong type of plant. Rice crops are included in the agricultural sector. This is because rice is the primary

food source for the Indonesian people.

According to the Central Statistics Agency (BPS), Indonesia's rice production in 2021 was 54.42 million tons. Converted to rice, the 2021 rice production reached around 31.36 million tons, or down as much as 140.73 thousand tons compared to rice production in 2020. The need for rice will always increase along with the increasing population. Rice production in Java West in 2021 was as big as 9.11 million tons, whereas paddy production in Garut Regency was 443.31 thousand tons (Central Statistics Agency, 2022)

Rice cultivation requires fertilizer. However, in reality, farmers in various regions have complained about the high price of non-subsidized fertilizers. Under normal conditions (at the end of 2020), the price of non-subsidized fertilizers was Rp. 265,000-Rp. 285,000 per sack for Urea, Rp. 400,000 per sack for NPK Mutiara, and Rp. 170,000 per sack for NPK Phonska. However, in January 2022, the price of Urea fertilizer had reached Rp. 560,000 per sack, Rp. 600,000 per sack for NPK

Mutiara, and Rp. 240,000 per sack for NPK Phonska. The increase in the price of non-subsidized fertilizers was caused by soaring global commodity prices such as ammonia, phosphate rock, and KCL, the energy crisis in Europe, and the policies of several countries that halted exports (Nyoman Ary Wahyudi, 2021).

In addition, subsidized fertilizer is difficult to obtain, and the process of obtaining subsidized fertilizer is very complicated, so much time is wasted for the results to be good. Suboptimal. Problems resulting from fertilizer shortages have become an obstacle for farmers in increasing production and income.

One hectare of rice cultivation requires at least 500 kg of Petroganik organic fertilizer, 300 kg of Phonska NPK fertilizer, and 200 kg of urea. Therefore, farmers need a significant amount of fertilizer when cultivating rice. (Fitriana Monica, 2019).

Seeing this phenomenon, it is interesting to conduct research, because it is essential to know the factors that influence farmers' interest in using organic and inorganic fertilizers, amidst the many

fertilizer problems that occur at this time.

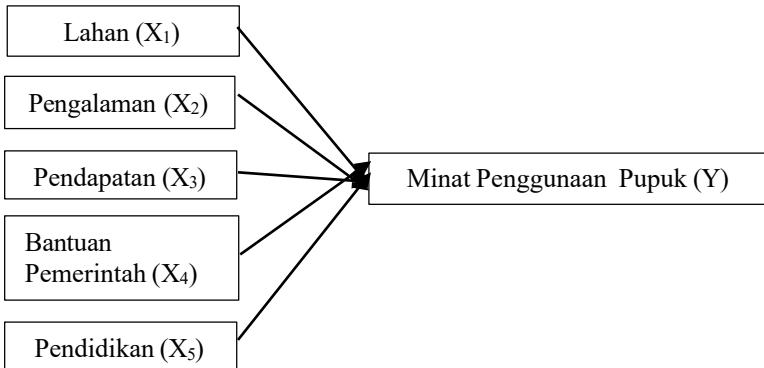
METHODS

This study used quantitative methods. The sample consisted of 30 rice farmers, using simple random sampling. The data collection method used in this study was: the First use interview with an open questionnaire. Second, the closed questionnaire uses a Likert scale with an ordinal measurement scale, as 1 = Strongly Disagree, 2 = Disagree, 3 = Agree, 4 = Strongly Agree.

The variables to be measured are as follows: (1) Land: land has been designated and generally has an owner (individual or institution). Land has several indicators, such as land area and land ownership. (2) Experience, such as the length of time a rice farmer has been carrying out rice farming activities. Experience has several indicators, such as the length of time the rice farmer has been farming and the skills possessed. (3). Income consisted of the profit obtained from the sale of rice farming products. The income indicator is the income received by farmers. (4).

Government assistance is the distribution of funds from the government or other institutions to meet the needs of farmers. Assistance has several indicators, such as the type of assistance, the assistance process, and the suitability of the assistance received. (5) Education is the ability to explore and increase farmers' understanding of everything, both increasing knowledge and skills. Education is an indicator of the level of education of farmers.

The data analysis technique in this study used correlational statistics. However, it was first tested using classical assumption tests, including validity and reliability, normality, multicollinearity, and heteroscedasticity. After that, the test was a multiple linear regression. Test regression linear multiple with the following equation form:


$$Y = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + b_5 X_5 + e$$

Information:

- Y = Interest Use Fertilizer
- a = Constant
- b = Coefficient Regression
- X₁ = Land
- X₂ = Experience
- X₃ = Income

X₄ = Government aid
X₅ = Education
e = *Standard error*

This analysis is used to see how much influence the independent variable has on the dependent variable.

Picture 1. Variables Study

Testing hypothesis used for known truth from regression testing, which is done, so mark search coefficient determination (*adjusted R*²). To determine whether or not there is an influence of the independent variable on the dependent variables directly or indirectly through a simultaneous test (test F) and a partial test (test t). Test Hypothesis Test F, which was submitted as follows :

- $H_0 : b_1, b_2, b_3, b_4, b_5 = 0$. There is no significant influence between the land variables (X₁), experience (X₂), income (X₃), government aid (X₄), and education (X₅).
- $H_1 : b_1, b_2, b_3, b_4, b_5 \neq 0$. There is a significant influence between the variables land (X₁), experience (X₂), income (X₃), government assistance (X₄), and education (X₅).

Test Hypothesis t-test, which is submitted as follows:

- $H_0 : b_1 = 0$. There is a significant influence of the variable land (X₁) on interest in using fertilizer (Y).
- $H_1 : b_1 \neq 0$. There is a significant influence of the variable land (X₁) on interest in using fertilizer (Y).
- $H_0 : b_2 = 0$. There is no significant influence of the experience variable (X₂) on interest in using fertilizer (Y).
- $H_1 : b_2 \neq 0$. There is a significant influence of the variable experience (X₂) on interest in using fertilizer (Y).
- $H_0 : b_3 = 0$. There is no significant influence of the income variable (X₃) on interest in using fertilizer (Y).
- $H_1 : b_3 \neq 0$. There is a significant influence of the variable income (X₃) on interest in using fertilizer (Y).

- $H_0 : b_4 = 0$. There is a significant influence of the variable government assistance (X_4) on the use of fertilizer (Y).
- $H_1 : b_4 \neq 0$. There is a significant influence of the variable Government aid (X_4) on interest in using fertilizer (Y).
- $H_0 : b_5 = 0$. There is no significant influence of the variable education (X_4) on interest in using fertilizer (Y).
- $H_0 : b_5 \neq 0$. There is a significant influence of the variable education (X_4) on interest in using fertilizer.

Table 1. Results Test Validity Land (X_1)

No	R count	R table	Validity
1	0.757	0.3610	Valid
2	0.758	0.3610	Valid
3	0.839	0.3610	Valid

Table 2 shows that all statements used in the questionnaire are valid, as seen from the calculated r value $> r$ table. Therefore, it can be concluded that all statement items in

RESULT AND DISCUSSION

Table 1 shows that all statements used in the questionnaire are valid, as seen from the calculated r value $>$ the table r value. Therefore, it can be concluded that all statement items in the land variable are truly representative statements that can represent the influence of the variable of interest on fertilizer use.

Validity Test

the experience variable are truly representative statements that can represent the influence of the variable of interest in fertilizer use.

Table 2. Results Test Validity of Experience (X_2)

No Item	R count	R table	Validity
1	0.762	0.3610	Valid
2	0.628	0.3610	Valid
3	0.664	0.3610	Valid
4	0.759	0.3610	Valid

Table 3 shows that all statements used in the questionnaire are valid, as seen from the calculated r value $>$ the

table r value. Therefore, it can be concluded that all statement items in the income variable are truly representative statements that can

represent the influence of the variable of interest on fertilizer use.

Table 3. Results Test Validity Income (X 3)

No Item	R count	R table	Validity
1	0.668	0.3610	Valid
2	0.380	0.3610	Valid
3	0.682	0.3610	Valid
4	0.772	0.3610	Valid
5	0.842	0.3610	Valid

Table 4 shows that all statements used in the questionnaire are valid, as seen from the calculated r value $>$ r table. Therefore, it can be concluded that all statement items in

the assistance variable are truly representative statements that can represent the influence of the variable of interest in using the questionnaire.

Table 4. Results Test Validity Government Aid (X 4)

No Item	R count	R table	Validity
1	0.829	0.3610	Valid
2	0.772	0.3610	Valid
3	0.827	0.3610	Valid
4	0.841	0.3610	Valid
5	0.805	0.3610	Valid

Table 5 shows that all statements used in the questionnaire are valid, as seen from the calculated r value $>$ r table. Therefore, it can be concluded that all statement items in

the education variable are truly representative statements that can represent the influence of the variable of interest on fertilizer use.

Table 5. Results Validity Test Education (X 5)

No Item	R count	R table	Validity
1	0.888	0.3610	Valid
2	0.718	0.3610	Valid
3	0.889	0.3610	Valid
4	0.913	0.3610	Valid
5	0.750	0.3610	Valid

Table 6 shows that all statements used in the questionnaire are valid, as seen from the calculated r

value $>$ the table r value. Therefore, it can be concluded that all statement items in the interest variable are truly

representative statements that can represent the influence of the interest variable on fertilizer use.

Table 6. Results Test Validity Interest (Y)

No Item	R count	R table	Validity
1	0.524	0.3610	Valid
2	0.757	0.3610	Valid
3	0.663	0.3610	Valid
4	0.708	0.3610	Valid

Reliability Test

Based on Table 7, all the variables have a Cronbach's Alpha of

more than 0.600. Therefore, it can be concluded that the questionnaire used in the statement is reliable.

Table 7. Reliability Test Results

No	Variables		
1	Land (X 1)	0.634	Reliable
2	Experience (X 2)	0.639	Reliable
3	Income (X 3)	0.666	Reliable
4	Government aid (X 4)	0.853	Reliable
5	Education (X 5)	0.884	Reliable
6	Interest (Y)	0.608	Reliable

Based on Table 8, the probability figure or *Asygm. Sig* (2-tailed) is obtained as $0.052 > 0.05$ (5%), so it can be

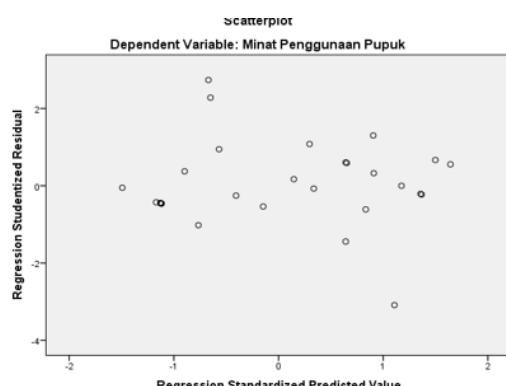
concluded that the data in this study are usually distributed.

Table 8. Normality Test

One-Sample Kolmogorov-Smirnov Test		
	Unstandardized Residual	
N		30
Normal Parameters a,b	Mean	.000
	Std.Deviation	.961
Most Extreme Differences	Absolutee	.159
	Positive	.100
	Negative	-.159
Test Statistics		.159
Asymp. Sig. (2-tailed)		.052 c

a. Test distribution is Normal.

b. Calculated from data.


c. Lilliefors Significance Correction.

Source: Data Primary Processed (2023).

Multicollinearity Test

Based on Table 9, the tolerance value is > 0.1 and $VIF < 10$, the land obtains a mark tolerance of $0.574 > 0.1$ and a mark VIF of $1,741 < 10$. Second experience gained mark tolerance $0.362 > 0.1$, and VIF $2,279 < 10$. Third income gets mark tolerance $0.868 > 0.1$ and VIF $1,152 < 10$. Fourth Government aid obtained a tolerance value of $0.751 > 0.1$ and VIF

Based on Figure 1, it can be concluded that this research is free from assumptions of heteroscedasticity due to a dot, dot, dot patterned and spread on and below the number.

Figure 1. Test Heteroscedasticity

Based on Table 10, the results of the multiple linear regression test, it can be known that the regression equation is as follows:

$$Y = 13.198 - 0.489 + 0.190 - 0.011 - 0.098 + 0.057 + e$$

From the equality regression, it can be

$1.332 < 10$. The five educations obtained a tolerance value of $0.293 < 0.1$ and a VIF of $3.208 < 10$. So it can be concluded that there are no symptoms of multicollinearity from all variables.

Table 9. Multicollinearity Test

Variables	Collinearity Statistics	
	Tolerance	VIF
Land (X1)	0.574	1,741
Experience (X2)	0.362	2,279
Income (X3)	0.868	1,152
Government aid (X4)	0.751	1,332
Education (X5)	0.293	3,208

Source: Data Primary Processed (2023) described as follows:

- $a = 13.198$ is a constant or condition when the variable of interest in using fertilizer (Y) has not been influenced by other variables, consisting of land variables (X1), experience (X2), income (X3), assistance (X4), and education (X5). If the independent variable does not exist, the variable of interest in using fertilizer (Y) will not change.
- $b_1 = -0.489$ shows that the land variable (X1) does not influence the variable of interest in using fertilizer (Y).
- $b_2 = 0.190$, where ($p > 0.05$) shows that the variables experience (X2) does not affect the variable of

interest in using fertilizer (Y).

- $b_3 = -0.011$ shows that the income variable (X_3) does not influence the variable of interest in using fertilizer (Y).
- $b_4 = -0.098$, where ($p > 0.05$) shows that the assistance variable (X_3) does not influence the variable of interest in using fertilizer (Y).

Table 4. Results F test (ANOVA)

Model	Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	35,513	5	7.103	6.364
	Residual	26,787	24	1,116	
	Total	62,300	29		

a. Dependent Variable: Interest Use Fertilizer

b. Predictors: (Constant), Education, Income, Government aid, Land, Experience

Source: *Data primary processed* (2023)

The results of the F test with SPSS obtained a calculated F value of 6.364 with a probability of $0.001 < 0.05$. Simultaneously, variables such as land, experience, income, government aid, and education level have a real influence on interest in using organic and inorganic fertilizers.

Test Partial (Test t)

The results of hypothesis testing in this study are as follows:

Table 5. Partial test (t-test)

	t	Sig.
Land (X_1)	3.744	.001
Experience (X_2)	3.125	.005
Income (X_3)	-.126	.901
Government aid (X_4)	.811	.425
Education (X_5)	.447	.659

Source: Data Primary Processed (2023)

- $b_5 = 0.057$, where ($p > 0.05$) shows that variable education (X_5) does not influence the variable of interest in using fertilizer (Y).

Hypothesis Tests

Simultaneous Test (Test F)

Results test the hypothesis in a way that can be seen in Table 4, as follows:

Land (X_1) and Experience (X_2) have statistically significant effects on rice farmers' interest in organic vs inorganic fertilizer use because their Sig. values are below 0.05 ($t = 3.744$, $Sig. = .001$; $t = 3.125$, $Sig. = .005$). Income (X_3), Government aid (X_4), and Education (X_5) are not statistically significant in this model ($p > 0.05$), so the data provide no evidence that they have a direct effect on interest within this sample.

Land size (X_1): Larger or differently endowed land parcels are associated with changed interest in fertilizer type; farmers with more land are more likely to experiment, mix, or invest in inputs because they can spread

risk and capture scale economies. Larger or better-endowed land increases capacity to experiment, diversify inputs, or capture scale economies, so landholders are more likely to adopt or combine organic and inorganic fertilizers; the t-test shows land is a clear, independent predictor of interest (Aryal, 2021).

Experience (X_2): Farmers with greater farming experience show stronger, systematic interest in choosing organic or inorganic options, reflecting accumulated knowledge, risk management skills, and confidence to adopt practices that may require timing or technique. Farming experience and practical know-how. Experienced farmers have tacit knowledge about timing, rates, and integration of inputs; they are more confident to trial or adopt organic/inorganic strategies, which matches the significant effect of Experience in the t-test (Aryal, 2021).

Income (X_3): Cash availability may be correlated with interest in practice, but here it does not explain additional variation once land and experience are accounted for, suggesting mediation or sample-specific effects. Although Income was not significant here, economic considerations remain important:

farmers facing tight cash flow prefer fast-response inorganic fertilizers, while those able to invest for longer-term soil benefits may use organics (Aryal, 2021).

Government aid (X_4): Program presence or amounts did not show a direct effect in this test; program design, targeting, or uptake heterogeneity likely changes its measurable impact. Institutional support and program design. Government aid or extension can influence adoption only when it reduces uncertainty or provides bundled technical support; the nonsignificant Government aid in the t-test suggests that simply providing aid is insufficient unless it is well-targeted, conditional, or combined with training and demonstrations (Aryal, 2021).

Education (X_5): Formal schooling level did not predict interest after controlling for land and experience, implying that practical on-farm experience and resources explain more of the variation than formal education in this dataset.

Field-level results showing organic fertilizer benefits (growth, soil health) and farmer trials make organic options credible; applied studies of organic fertilizer effects on rice growth support promoting demonstrations

alongside measurements of yield and soil response (Riskan, 2024).

Access to input and output markets, Availability and reliability of input supply (fertilizer quality, organic amendments), and the existence of price premiums or buyer demand for organic rice shape interest and adoption, even if these variables were not captured as significant in this model (Aryal, 2021).

This is because the land owned by rice farmers greatly influences the choice of fertilizer for rice cultivation. Therefore, the availability of land can make rice farmers interested in what fertilizers to use in their rice cultivation. This is in accordance with Others (1988) in Joko Triyanto (2006). Vast land greatly influences interest; if the land area is wider, then the interest of rice farmers in using fertilizer in farming will increase. The experience variable has no significant effect on the interest in using fertilizer. This is because the length of experience in rice cultivation will not replace the interest in using fertilizer. The income variable has no significant effect on the interest in using fertilizer. The results of the data analysis show that income does not affect interest in fertilizer use. Rice

farmers' income is not a factor in farmers' choice of fertilizer to use in their rice cultivation. This is because how much big income dear obtained, No will replace the interest in using fertilizer.

The government assistance variable partially has no significant effect on interest in fertilizer use. This is because, in this case, the government does not provide subsidies to rice farmers, the government does not lower fertilizer prices, and the fertilizer provided is not well-targeted. Therefore, government assistance does not affect interest in fertilizer use.

The education variable has no significant effect on the interest in using fertilizer. This is because farmers need more non-formal education. According to Mulyono (2001), Farmer education is influenced by the frequency with which farmers participate in agricultural extension activities. Agricultural extension activities are recognized as contributing to the success of agricultural development in Indonesia.

Test Coefficient Determination (R^2)

The R-squared *value* of 0.570 indicates that 57% of interest in fertilizer use is influenced by land, experience,

income, government assistance, and education. The remaining 33% is influenced by other variables not included.

Table 5. Test Coefficient Determination (R^2)

Model	R	R Squared	Model Summary	
			Adjusted R Square	Std. Error of the Estimate
1	.755 a	.570	.480	1.05646

a. Predictors: (Constant), Education, Income, Government aid, Land, Experience

Dependent Variable: Interest in Fertilizer Use Source: Primary Data Processed (2023)

CONCLUSION

Factors that influence rice farmers' interest in using organic fertilizer and inorganic fertilizer are land, experience, income, government aid, and education. Land area has a significant influence on rice farmers' interest in using organic and inorganic fertilizers. Meanwhile, experience, education, and assistance from the government and education are not influential on the interest of farmers in rice in the use of organic and inorganic fertilizers. With a contribution value of Determination R^2 , the influencing factors are land, experience, income, government assistance, and education at 57%.

SUGGESTION

The role of the government in improving the quality of education for rice farmers by holding regular extension services for farmers as non-formal education for the farmers' paddy Village of Rancabango. Besides that, extension workers in agriculture should also give an order method, utility government aid,

and fertilizer so that farmers can apply the correct method of using fertilizer subsidies.

REFERENCES

Achmal, A. (2016). *Analysis of demand for organic fertilizer in rice farming in Majalengka sub-district, Majalengka regency* (doctoral dissertation, Gadjah Mada University).

Agustina, F. et al. (2022). Optimalisasi Produksi Cabai Merah di Kabupaten Bangka Tengah. *Universitas Bangka Belitung Repository*

Ali, A. N., & Tunnisa, K. (2022). Penerapan Metode Dss (Maut & Irr) Dalam Menentukan Kelayakan Pengaduan. *Sintech (Science And Information Technology) Journal*, 5(1), 95-102. <Https://Doi.Org/10.31598/Sintechjournal.V5i1.952>

Arafah. (2009). Management and Utilization of Wetland Rice. Bumi Aksara, Bogor.

Aryal, J. P., Sapkota, T. B., Timothy, J., Krupnik. Rahut, D. B., Jat, M. L. and Stirling, C. M. (2021). actors affecting farmers' use of

organic and inorganic fertilizers in South Asia. *Environmental Science and Pollution Research*. Springer Nature. 28: 51480–51496.

Creswell, J. W. (2014). *Study Qualitative and Design Research*, Yogyakarta, Library Students.

Gama, I. Gusti Made, Rina Oktaviani, and Amzul Rifin. (2016). Analysis of farmer satisfaction with the use of organic fertilizer on rice plants. *Journal Agro Economy* 34(2) 105–122.

Handayanti, B. (2016). Influence of Government Policy on Interest in Farming Paddy Rice Fields in Warungkondang District, Cianjur, West Java. BS thesis. Faculty of Science and Technology, UIN Sharif Hidayatullah Jakarta.

Nugroho, P. (2019). Guide to Making Liquid Compost. Yogyakarta: Pustaka Baru Press Publisher

Rangkuti F. 2015. SWOT Analysis of Business Case Dissection Techniques. Jakarta: PT. Gramedia Pustaka Utama

Rizkan, A. (2024). The Effect of Providing Organic Fertilizer on the Growth of Rice Plants in Dry Land. *Agricultural Science Journal*. 1(1):1-3.

Sarina, S., Silamat, E., & Puspitasari, D. (2017). Analysis of Factors Affecting Red Chili Production in Kampung Melayu Village, Bermani Ulu District, Rejang Lebong Regency. *Agroqua Journal: Agronomy Information Media And Cultivation Waters*, 13 (2), 57-67

Susetya, D. 2021. Complete Guide to Making Organic Fertilizer. Yogyakarta : Pustaka Baru Press Publisher

Saleh, K. (2020). Analisis Kelayakan Finansial Pengembangan Usahatani Labu Madu Di Kabupaten Pandeglang Provinsi Banten. *Jurnal Agribisnis Indonesia*, 8(2), 131–141. <Https://Doi.Org/10.29244/Jai.2020.8.2.131-141>

Ulum, B. Analysis of factors influencing community perceptions and attitudes towards the use of organic fertilizer: a case study in Ciburial village, Bandung, Java, Bali.

Umar, H. (2011). Research Methods for Business Theses and Dissertations. Jakarta: PT. Raja Grafindo Persada Greenhouse Pada Lahan Terbatas Berbasis Internet of Things (IoT). *Jurnal Edukasi Dan Penelitian Informatika (JEPIN)*, 8(1), 87. <Https://Doi.Org/10.26418/JpV8i1.52770>

Widodo, A., Nazir, A., & Sunarsi, D. (2020). Pengaruh Biaya Operasional Terhadap Profitabilitas Pada PT Tropical Di Jakarta. *TIN: Terapan Informatika Nusantara*, 1(3), 113–117.

Zifa, N. M., Zaini, A., & Husn, S. (2023). (Studi Kasus Kelompok Tani Milenial Pesona Alam Desa Wisata Kebon Ayu Kecamatan Gerung Kabupaten Lombok Barat). 24(2), 346–358. <Https://Doi.Org/Https://Doi.Org/10.29303/Agrimansion.V24i2.1505>