

INFORMATICS AND DIGITAL EXPERT (INDEX) - Vol. 7 No. 2 (2025) 113-120

Terbit *online* pada laman web jurnal : https://e-journal.unper.ac.id/index.php/informatics | ISSN (Print) 2775-2208 | ISSN (Online) 2715-0453 |

Pengembangan Sistem Pendukung Keputusan Penentuan Kelayakan Telur Tetas Ayam Menggunakan Metode SAW-WP

Dimas Priyadi ¹, Dede Rizal Nursamsi², Nuk Ghurroh Setyoningrum³

¹Program Studi Sistem Informasi, Universitas Cipasung Tasikmalaya, Padakembang, Tasikmalaya, 46466, Indonesia ²Universitas Cipasung Tasikmalaya, Padakembang, Tasikmalaya, 46466, Indonesia ³Universitas Cipasung Tasikmalaya, Padakembang, Tasikmalaya, 46466, Indonesia e-mail: priyadidimas12@gmail.com ¹, dederizalnursamsi@uncip.ac.id², nuke@uncip.ac.id³

INFORMASI ARTIKEL

Sejarah Artikel:

Diterima Redaksi : 22 September 2025 Revisi Akhir : 04 November 2025 Diterbitkan *Online* : 10 November 2025

Kata Kunci:

Sistem Pendukung Keputusan, SAW, WP, Telur Tetas, Waterfall.

Korespondensi:

Telepon / Hp: +6287879184026 E-mail: priyadidimas12@gmail.com

ABSTRAK

Telur tetas merupakan faktor penting dalam pembibitan ayam karena kualitas telur yang digunakan akan menentukan keberhasilan penetasan. Di Nurhidayat Farm, proses seleksi kelayakan telur masih dilakukan secara manual dan subjektif sehingga berpotensi menimbulkan ketidakkonsistenan hasil. Penelitian ini bertujuan mengembangkan sistem pendukung keputusan (SPK) berbasis web untuk menentukan kelayakan telur tetas ayam dengan mengkombinasikan metode simple additive weighting (SAW) dan weighted product (WP). Kedua metode ini dipilih karena mampu memberikan perhitungan objektif melalui normalisasi bobot kriteria dan perhitungan preferensi. Penilaian di dasarkan pada empat kriteria utama, yaitu berat telur, usia telur, kebersihan cangkang, dan ukuran telur. Pengembangan sistem menggunakan metode waterfall mulai dari analisis kebutuhan, perancangan, implementasi, hingga pengujian dengan metode black box. Hasil penelitian menunjukkan bahwa sistem yang dikembangkan mampu memberikan hasil perangkingan telur berdasarkan tingkat kelayakan secara konsisten dan akurat. Dengan demikian, sistem ini dapat membantu peternak meningkatkan efisiensi proses seleksi serta mengurangi ketergantungan pada intuisi subjektif. Selain itu, sistem yang dibangun menyajikan tampilan interaktif dan dapat diakses secara real-time sehingga mendukung pengambilan keputusan yang lebih cepat dan tepat.

1. PENDAHULUAN

Telur ayam merupakan komoditas penting dalam kehidupan masyarakat Indonesia, baik untuk konsumsi maupun untuk keperluan pembibitan. Telur memiliki tiga komponen utama: kulit telur, putih telur (cairan bening), dan kuning telur (cairan warna kuning). Berat total telur terdiri dari 11% cangkang, 57% putih telur, dan 32% kuning telur. Telur segar yang baik memiliki bentuk yang bagus, ketebalan yang sesuai, warna yang bersih, gelembung udara kecil di dalamnya, kuning di tengah, dan tidak ada noda atau bercak darah [1].

Telur fertil, juga dikenal sebagai telur tetas, dihasilkan oleh pembibit ayam daripada oleh peternak ayam komersil. Untuk digunakan dalam proses penetasan, telur tetas adalah telur yang telah berhasil dipilih, yang berarti telur tersebut sehat dan produktif, serta telah mencapai usia tertentu yang memiliki kualitas fisik yang baik, seperti bentuk, berat, dan kondisi cangkang. Seleksi telur atau *Grading* adalah langkah pertama dalam proses penetasan. Langkah ini merupakan proses mengelompokkan telur menjadi dua bagian, yaitu telur yang layak tetas (*Heaching Egg*), dan telur yang tidak layak tetas (*Grade Out*) [2]. Di dalam proses *grading* terdapat beberapa kendala dikarenakan kurang teliti dalam seleksi telur dan kurang mengetahui ciri telur yang memiliki kelayakan untuk ditetaskan.

Untuk mendukung penelitian, penulis mengambil beberapa hasil penelitian yang dijadikan sebagai landasan dasar. Penelitian yang berjudul "Sistem

Pendukung Keputusan Metode SAW Pemilihan Kualitas Telur Ayam RAS pada Agen Telor 24" menyimpulkan bahwa penerapan metode Simple Additive Weighting (SAW) mempercepat proses penyeleksian telur ayam berkualitas serta mengurangi kesalahan dalam proses pemilihan. Di dalam proses seleksinya penelitian ini menggunakan tiga kriteria di antaranya warna, berat dan usia [3]. Penelitian lain juga yang menggunakan metode SAW yang berjudul "Pengembangan Sistem Pendukung Keputusan Berbasis Mobile dalam Pemilihan Kualitas Telur pada Kurniajaya Farm" penelitian ini juga untuk menentukan kualitas telur ayam, membantu peternak dalam mengidentifikasi telur dengan kualitas terbaik berdasarkan indikator-indikator seperti ukuran, berat, kebersihan cangkang dan ketebalan cangkang pada Kurniajaya Farm [4]. Penelitian lainnya juga yang berjudul "Penerapan Algoritma C4.5 untuk menentukan Kualitas Telur Ayam Hibrida (Studi Kasus di CV. Senik Desa Suruhwadang Kabupaten Blitar)" di dalam proses penentuannya, penelitian ini menggunakan lima kriteria diantaranya kebersihan cangkang, kondisi kulit, warna, bentuk, dan berat telur [5]. Namun, ketiga penelitian tersebut masih berfokus pada kualitas telur secara umum. Oleh karena itu penelitian ini berfokus terhadap pengembangan sistem pendukung keputusan dalam seleksi kelayakan telur untuk ditetaskan.

Penentuan kelayakan telur tetas merupakan tahapan krusial dalam proses pembibitan, karena kualitas telur yang ditetaskan secara langsung akan memengaruhi terhadap keberhasilan produksi ayam yang sehat dan unggul. Khususnya di Nurhidayat *Farm*, proses penyeleksian telur masih dilakukan secara manual dan subjektif yang mengandalkan pengalaman peternak. Hal tersebut berpengaruh terhadap ketidakkonsistenan penilaian sehingga pada akhirnya dapat menyebabkan kegagalan penetasan dan menurunnya produktivitas bibit ayam. Tujuan penetasan telur ayam ini adalah untuk menghasilkan bibit ayam sehat dan berkualitas, yang nantinya akan dijual kepada masyarakat atau peternak lain.

Implementasi metode simple additive weighting dan weighted product dalam penelitian ini menawarkan solusi konkret dan terukur untuk menyelesaikan permasalahan dalam proses penyeleksian telur tetas. Metode simple additive weighting dan weighted product dikenal karena memiliki kemampuan mempermudah proses penilaian melalui kalkulasi bobot tiap kriteria yang ditentukan. Dengan mengembangkan sistem berbasis web menggunakan metode pengembangan waterfall, peternak akan lebih mudah dalam melakukan klasifikasi telur secara objektif tanpa bergantung sepenuhnya terhadap intuisi atau pengalaman subjektif.

2. METODE PENELITIAN

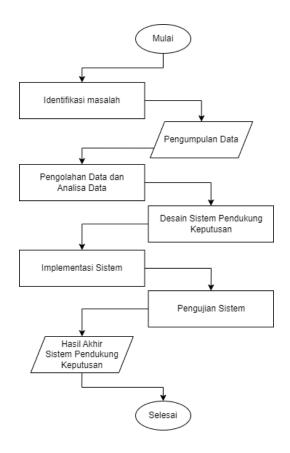
Alur penelitian ini dimulai dengan mengidentifikasi masalah yang akan dipecahkan dalam penelitian. Kemudian dilakukan pengumpulan data yang relevan agar data yang digunakan dalam penelitian ini dapat diolah lebih lanjut. Proses pengumpulan data dilakukan dengan dua pendekatan yaitu wawancara dan studi literatur. Wawancara dilakukan secara langsung dengan peternak untuk memperoleh data mengenai kriteria telur vang lavak untuk ditetaskan berdasarkan dari peternak. Kemudian studi literatur dilakukan dengan pengalaman mengkaji beberapa penelitian sebelumnya yang relevan dengan topik penelitian untuk memperoleh referensi terkait dan memperkuat data yang diperoleh dari hasil wawancara. Data yang diperoleh kemudian diolah dengan mengkombinasikan metode simple additive weighting dan weighted product. Kemudian dilanjut dengan merancang desain sistem yang berisi langkahlangkah terstruktur untuk mencapai tujuan dari penelitian. Desain yang telah dirancang kemudian di terjemahkan kedalam bahasa pemrograman, dilanjut dengan proses pengujian yang bertujuan untuk memvalidasi implementasi program serta pengujian akurasi untuk mengetahui seberapa efektif dan efisien sistem yang yang dibuat. Hasil akhir dari penelitian ini adalah adanya sebuah sistem pendukung keputusan dalam menentukan kelayakan telur tetas ayam dengan mengkombinasikan metode simple additive weighting dan weighted product. Alur dari penelitian ini dapat dilihat pada gambar 1.

Kriteria yang digunakan dalam penelitian ini diperoleh dari hasil wawancara secara langsung dengan peternak dan studi literatur yaitu dengan mengkaji beberapa penelitian sebelumnya yang membahas tentang kualitas kelayakan telur ayam. Kriteria yang digunakan

dalam menentukan kelayakan telur tetas ayam ini diantaranya adalah berat telur(C1), usia telur(C2), kebersihan cangkang(C3), dan ukuran telur(C4). Kriteria tersebut dapat dilihat pada tabel 1.

Tabel 1. Kriteria Penilaian Kelayakan Telur Tetas Ayam

No	Kode	Kriteria	Bobot	Atribut
1	C1	Berat telur	4	Benefit
2	C2	Usia telur	3	Cost
3	C3	Kebersihan cangkang	2	Benefit
4	C4	Ukuran telur	1	Benefit


Selain data kriteria, dalam penelitian ini juga terdapat data subkriteria dari masing-masing kriteria yang sudah ditentukan. Data subkriteria ini diperoleh dari hasil wawancara langsung dengan peternak dan studi literatur agar penilaian menjadi lebih objektif. Data subkriteria tersebut dapat dilihat pada tabel 2.

Tabel 2. Data Sub Kriteria

Kriteria	SubKriteria	Nilai
	<40 gram	1
Berat telur	40-45 gram	3
Berat terui	46-50 gram	4
	>50 gram	5
	1-7 hari	1
Usia telur	8-10 hari	3
	11-14 hari	4
	>14 hari	5
	Retak	1
Kebersihan cangkang	Bercak	3
	Halus	5
	40-45 mm	1
Ukuran telur	46-50 mm	3
	>50 mm	5

Implementasi program sistem pendukung keputusan dalam menentukan kelayakan telur tetas ayam menggunakan kombinasi metode simple additive weighting (SAW) dan weighted product (WP). Metode simple additive weighting digunakan untuk melakukan proses pembobotan dan normalisasi data, sedangkan metode weighted product berperan dalam memperbaiki bobot kriteria dan menentukan perankingan pada proses perhitungan simple additive weighting dan weighted product [6]. Kombinasi dari kedua metode tersebut diharapkan dapat menghasilkan penilaian yang lebih objektif. Gambar 1 merupakan alur dari penelitian yang akan dilakukan.

Tahapan implementasi program dimulai dengan penerapan metode SAW yaitu menentukan kriteria-kriteria yang digunakan sebagai acuan untuk menentukan kelayakan telur tetas ayam. Setelah menentukan kriteria, dilanjut dengan menentukan bobot pada setiap kriteria, lalu menginput data alternatif yang akan digunakan. Kemudian memberikan *rating* kecocokan pada masing-masing alternatif berdasarkan kriteria yang sudah ditentukan [7]. Alternatif yang digunakan merupakan telur-telur yang akan ditetaskan. Kemudian dilanjut dengan proses normalisasi matriks berdasarkan jenis atribut (*benefit* atau *cost*)

Gambar 1. Alur Penelitian

proses normalisasi matriks berdasarkan jenis atribut (benefit atau cost) dengan menggunakan rumus sebagai berikut:

$$rij = \begin{cases} \frac{xij}{\text{Max } xij} & \text{jika j atribut benefit} \\ \frac{\min xij}{xij} & \text{jika j atribut cost} \end{cases}$$
(1)

Keterangan:

R ij = nilai skor yang ternormalisasi

X_ij = nilai atribut yang dimiliki pada setiap kriteria

Max X ij = nilai terbesar dari setiap i kriteria

Min X ij = nilai terkecil dari setiap i kriteria

Tahap selanjutnya yaitu menerapkan metode WP yaitu dengan melakukan perbaikan bobot dengan mengalikan seluruh atribut bagi sebuah alternatif dimana bobot tersebut memiliki pangkat positif untuk atribut benefit dan pangkat negatif untuk atribut cost. Hasil perkalian tersebut kemudian dijumlahkan untuk menghasilkan nlai vektor S bagi setiap alternatif [8]. Berikut rumus yang digunakan untuk memperoleh nilai vektor S bagi setiap alternatif.

$$Si = \prod_{i}^{n} = xijwj \tag{2}$$

Keterangan:

S: Menyatakan preferensi alternatif yang dianalogikan sebagai nilai vektor S

X : Nilai kriteria w: Bobot kriteria i: Alternatif j : Kriteria

n: Banyaknya kriteria

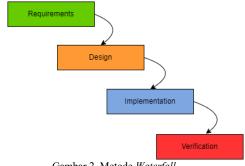
Langkah berikutnya adalah mencari nilai vektor V dengan cara nilai S dari setiap alternatif dibagi dengan total nilai S untuk menghasilkan nilai vektor V. Berikut rumus yang digunakan untuk memperoleh nilai vektor V.

$$\begin{array}{c}
n \prod \\
j = xi \ wj
\end{array}$$

$$V_{i} = \frac{1}{\prod_{i} = (xi) w_{i}} \qquad (3)$$

Keterangan:

V : Preferensi alternatif yaitu sebagai vektor V

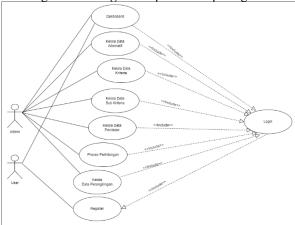

X : Nilai kriteria

W: Bobot kriteria subkriteria

i: Alternatif j : Kriteria

n: Banyaknya Kriteria

Metode pengembangan sistem pada penelitian ini menggunakan metode Waterfall, yaitu metode pengembangan perangkat lunak secara terstruktur dan sistematis yang pada setiap tahapan nya memiliki target yang harus dicapai untuk bisa melanjutkan ke tahap selanjutnya. Terdapat 4 tahap yang digunakan dalam penelitian ini antara lain, requirements, design, implementation, dan verification. Pada penelitian ini proses metode waterfall hanya sampai tahap pengujian [9]. Metode pengembangan sistem ini dapat dilihat pada gambar 2.

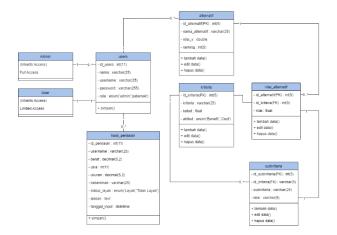

Gambar 2. Metode Waterfall

Berdasarkan gambar 2 diatas tahap awal dalam metode waterfall yaitu requirements. Tahap ini mengidentifikasi permasalah atau fenomena yang akan di selesaikan. Serta menganalisis kebutuhan perangkat lunak, perangkat keras, kebutuhan pengguna serta kebutuhan lain yang relevan dengan penelitian. Tahap selanjutnya adalah tahap design, tahapan yang dilakukan dengan membuat rancangan sistem sebagai acuan untuk implementation sistem. Design sistem ini berfokus terhadap pembuatan desain sistem yang mencakup arsitektur, antarmuka, database dan komponen lain yang dibutuhkan. Tahap selanjutnya implementation yaitu

proses pengkodean dimana desain yang telah dirancang diterjemahkan kedalam bahasa pemrograman. Bahasa pemrograman yang digunakan adalah *Hypertext Prepocessor (PHP)* dengan menggunakan *Visual Studio Code* sebagai aplikasi pengembangan program dan *MySQL* sebagai basis data. Tahap terakhir yaitu *verification* yaitu melakukan pengujian terhadap hasil dari pengkodean dan komponen yang telah dibangun. Tujuan dari pengujian ini adalah untuk mengetahui akurasi seberapa efisien dan efektif sistem yang telah dibuat. Dalam tahap pengujian ini menggunakan metode *Black Box* yaitu dengan menguji fungsionalitas sistem secara keseluruhan tanpa memperhatikan program.

3. PERANCANGAN SISTEM

Rancangan sistem pada penelitian ini menggunakan dua model yaitu use case diagram dan class diagram. Rancangan Use case diagram bertujuan untuk mendefinisikan apa yang diproses oleh sistem dan komponen-komponennya. Use case bekerja dengan menggunakan skenario yang mendeskripsikan urutan atau langkah-langkah yang dilakukan oleh user terhadap sistem maupun sebaliknya [10]. Dalam use case terdapat dua aktor yaitu admin dan user. Rancangan use case sistem ini dapat dilihat pada gambar 3. Sedangkan rancangan Class Diagram yaitu memberikan gambaran mengenai struktur kelas-kelas dalam sistem yang akan dibangun. Class diagram ini memberikan penjelasan mengenai implmentasi-implementasi independen dari suatu jenis program yang digunakan, kemudian dilewatkan di antara berbagai komponennya [11]. Rancangan class diagram dapat dilihat pada gambar 4.



Gambar 3. Use Case Diagram

4. HASIL DAN PEMBAHASAN

4.1. Data Penelitian

Dari hasil penelitian yang dilakukan oleh penulis, diambil sebanyak 30 butir telur yang dijadikan sebagai data uji yang akan digunakan untuk proses penentasan telur ayam. Data alternatif dapat dilihat pada tabel 3.

Gambar 4. Class Diagram

f
f

Tabel 3. Data	Tabel 3. Data Alternatif		
Alternatif	Kode		
Telur 1	A1		
Telur 2	A2		
Telur 3	A3		
Telur 4	A4		
Telur 5	A5		
Telur 6	A6		
Telur 7	A7		
Telur 8	A8		
Telur 9	A9		
Telur 10	A10		
Telur 11	A11		
Telur 12	A12		
Telur 13	A13		
Telur 14	A14		
Telur 15	A15		
Telur 16	A16		
Telur 17	A17		
Telur 18	A18		
Telur 19	A19		
Telur 20	A20		
Telur 21	A21		
Telur 22	A22		
Telur 23	A23		
Telur 24	A24		
Telur 25	A25		
Telur 26	A26		
Telur 27	A27		
Telur 28	A28		
Telur 29	A29		
Telur 30	A30		

4.2. Proses Perhitungan

Proses perhitungan dengan menggunakan metode simple additive weighting ini dilakukan dengan menginput nilai alternatif yang telah ditentukan. Nilai yang diinput diubah menjadi rating kecocokan atau matriks keputusan agar lebih memudahkan dalam proses perhitungan selanjutnya. Matriks keputusan dapat dilihat pada tabel 4.

Tabel 4. Matriks Keputusan

raber 4. Matriks Keputusan					
Alternatif		Kriteria			
Alternatii	C1	C2	C3	C4	
A1	4	1	3	3	
A2	5	1	5	5	
A3	5	3	5	3	
A4	4	1	5	5	
A5	3	3	5	5	
A6	4	1	5	3	

Alternatif	<u>Kriteria</u>			
Aiternatii	C1	C2	С3	C4
A7	5	1	5	3
A8	5	1	3	3
A9	5	3	5	5
A10	1	1	3	3
A11	5	3	3	3 5 3 5 5 5 3 3 3
A12	5	1	3	5
A13	3	3	3	5
A14	3	4	1	3
A15	3	1	3	3
A16	4	3	5	3
A17	5	4	5	5
A18	3	1	5	1
A19	1	1	5	3
A20	5	4	5	3
A21	4	4	3	3
A22	5	4	5	1
A23	3	3	3	3
A24	5	1	3	1
A25	3	1	5	3
A26	4	3	3	3
A27	4	3	5	5 5 3
A28	4	1	3	5
A29	3	1	3	3
A30	5	4	3	5

Setelah matriks keputusan berhasil dibuat, proses selanjutnya yaitu normalisasi matriks keputusan alternatif. Proses normalisasi ini menggunakan persamaan (1) kemudian disesuaikan dengan jenis atributnya. Hasil normalisasi matriks keputusan alternatif dapat dilihat pada tabel 5.

Tabal 5 Namualiansi Matrila V

Tabel	Tabel 5. Normalisasi Matriks Keputusan			
Alternatif	Kriteria			
Alternatii	C1	C2	С3	C4
A1	0,800	1,000	0,600	0,600
A2	1,000	1,000	1,000	1,000
A3	1,000	0,333	1,000	0,600
A4	0,800	1,000	1,000	1,000
A5	0,600	0,333	1,000	1,000
A6	0,800	1,000	1,000	0,600
A7	1,000	1,000	1,000	0,600
A8	1,000	1,000	0,600	0,600
A9	1,000	0,333	1,000	1,000
A10	0,200	1,000	0,600	0,600
A11	1,000	0,333	0,600	1,000
A12	1,000	1,000	0,600	1,000
A13	0,600	0,333	0,600	1,000
A14	0,600	0,250	0,200	0,600
A15	0,600	1,000	0,600	0,600
A16	0,800	0,333	1,000	0,600
A17	1,000	0,250	1,000	1,000
A18	0,600	1,000	1,000	0,200
A19	0,200	1,000	1,000	0,200
A20	1,000	0,250	1,000	0,600
A21	0,800	0,250	0,600	0,600
A22	1,000	0,250	1,000	0,200
A23	0,600	0,333	0,600	0,600
A24	1,000	1,000	0,600	0,200
A25	0,600	1,000	1,000	0,600
A26	0,800	0,333	0,600	0,600
A27	0,800	0,333	1,000	1,000
A28	0,800	1,000	0,600	1,000
A29	0,600	1,000	0,600	0,600
A30	1,000	0,250	0,600	1,000

Setelah proses normalisasi matriks keputusan dilewati, selanjutnya melakukan perhitungan dengan metode Weighted Product untuk perbaikan bobot. Setelah perbaikan bobot dilakukan, kemudian

menghitung nilai vektor S. nilai vektor S ini diperoleh menggunakan persamaan (2). Hasil perhitungan nilai vektor S dapat dilihat pada tabel 6.

Tabel 6. Nilai Vektor S		
Alternatif	Vektor S	
A1	0,7847	
A2	1,0000	
A3	1,3211	
A4	0,9146	
A5	1,1334	
A6	0,8691	
A7	0,9502	
A8	0,8579	
A9	1,3904	
A10	0,4507	
A11	1,2554	
A12	0,9029	
A13	1,0234	
A14	0,8509	
A15	0,6994	
A16	1,2083	
A17	1,5157	
A18	0,6940	
A19	0,4472	
A20	1,4402	
A21	1,1893	
A22	1,2904	
A23	0,9724	
A24	0,7687	
A25	0,7746	
A26	1,0910	
A27	1,2717	
A28	0,8258	
A29	0,6994	
A30	1,3685	

Tahap terakhir yaitu menghitung nilai vektor V dengan menggunakan persamaan (3). Hasil nilai vektor V ini nilai yang akan dijadikan nilai preferensi untuk dilakukan perankingan. Hasil perhitungan nilai

preferensi ini dapat dilihat pada tabel 7.

Tabel 7. Nilai Vektor V				
Alternatif	Vektor V	Rangking		
A1	0,0262	23		
A2	0,0334	14		
A3	0,0441	5		
A4	0,0305	17		
A5	0,0378	11		
A6	0,0290	19		
A7	0,0317	16		
A8	0,0286	20		
A9	0,0464	3		
A10	0,0150	29		
A11	0,0419	8		
A12	0,0301	18		
A13	0,0342	13		
A14	0,0284	21		
A15	0,0233	26,5		
A16	0,0403	9		
A17	0,0506	1		
A18	0,0232	28		
A19	0,0149	30		
A20	0,0481	2		
A21	0,0397	10		
A22	0,0431	6		
A23	0,0325	15		
A24	0,0257	25		
A25	0,0259	24		
A26	0,0364	12		
A27	0,0424	7		
A28	0,0276	22		

Alternatif	Vektor V	Rangking
A29	0,0233	26,5
A30	0.0457	4

5. IMPLEMENTASI SISTEM

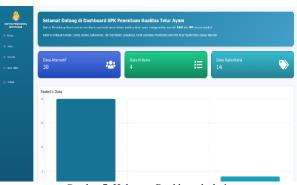
Sistem pendukung keputusan dalam menentukan kelayakan telur tetas ayam ini di implementasikan pada aplikasi berbasis website. Website ini dibangun menggunakan bahasa pemrograman php dengan visual studio code sebagai aplikasi pengembangnya dan mysql sebagai basis data.

1. Halaman Register

Gambar 5 merupakan halaman *register* untuk *user*/peternak sebelum melakukan *login. User* harus menginputkan *username* dan *password* terlebih dahulu untuk bisa dapat memiliki akses kedalam sistem. Halaman *register* ini hanya berlaku untuk *user*, admin dapat langsung *login* sesuai data yang telah terdaftar dalam basis data *website* tersebut.

Gambar 5. Halaman Register

2. Halaman Login


Gambar 6 merupakan halaman *login*, di mana admin dan *user* menginputkan *username* dan *password* masingmasing agar dapat masuk kedalam sebuah sistem. Jika admin/*user* salah menginputkan *username* dan *password* maka sistem akan memberikan notifikasi *error*.

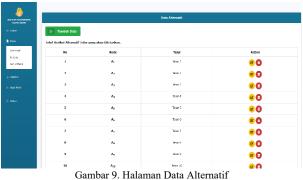
Gambar 6. Halaman Login

3. Halaman Dashboard admin

Gambar 7 merupakan halaman *dashboard* admin, halaman ini akan langsung ditampilkan ketika admin telah berhasil *login*. Pada halaman *dashboard*, admin dapat melihat jumlah data dari alternatif dan kriteria yang telah berhasil di inputkan.

Gambar 7. Halaman Dashboard admin

4. Halaman Dashboard User


Gambar 8 merupakan halaman *dashboard user*, halaman ini akan langsung ditampilkan ketika *user* telah berhasil *login*. Pada halaman ini *user* dapat menginput penilaian terhadap telur yang akan ditetaskan sesuai dengan kriteria yang telah ditentukan. Selain itu, pada halaman ini juga terdapat edukasi mengenai kriteria-kriteria telur yang layak untuk ditetaskan dan diprediksi akan berhasil dalam proses penetasan.

Gambar 8. Halaman Dashboard User

5. Halaman Data Alternatif

Gambar 9 merupakan halaman data alternatif, pada halaman ini alternatif di inputkan oleh admin sesuai dengan kebutuhan. Selain dapat menginput data, admin juga dapat mengedit dan menghapus data alternatif tersebut.

6. Halaman Data Kriteria

Gambar 10 merupakan halaman data kriteria, pada halaman ini kriteria di inputkan oleh admin sesuai dengan kebutuhan. Selain dapat menginput data, admin

juga dapat mengedit dan menghapus data kriteria tersebut.

Gambar 10. Halaman Data Kriteria

7. Halaman Data Subkriteria

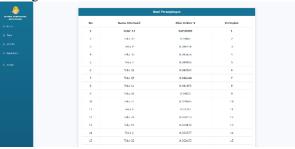
Gambar 11 merupakan halaman data subkriteria, pada halaman ini subkriteria di inputkan oleh admin sesuai dengan kebutuhan. Selain dapat menginput data, admin juga dapat mengedit dan menghapus data subkriteria tersebut.

Gambar 11. Halaman Data Subkriteria

8. Halaman Penilaian

Gambar 12 merupakan halaman penilaian, pada halaman ini admin dapat memberikan penilaian alternatif berdasarkan kriteria yang sudah ditentukan. Pada halaman ini juga admin dapat mengedit dan menghapus nilai yang sudah di inputkan.

9. Halaman Perhitungan


Gambar 13 merupakan halaman perhitungan, Pada halaman ini admin hanya dapat melihat proses perhitungan berdasarkan metode *simple additive* weighting dan weighted product.

Gamour 15. Halaman i Cimtanga

10. Halaman Perangkingan

Gambar 14 merupakan halaman perangkingan yang menampilkan proses akhir dari sistem pendukung keputusan dalam menentukan kelayakan telur tetas ayam. Halaman ini menampilkan nilai preferensi serta ranking dari semua alternatif.

Gambar 14. Halaman Perangkingan

6. KESIMPULAN

6.1. Kesimpulan

Berdasarkan hasil pembahasan dan implementasi metode simple additive weighting dan weighted product, maka diperoleh hasil perangkingan yang dapat dilihat pada tabel 7. Sebanyak 27 butir telur berhasil menetas sedangkan 3 alternatif peringkat terakhir dinyatakan gagal dalam proses seleksi kelayakan telur tetas. Ketiga alternatif tersebut yaitu telur 19, telur 10 dan telur 18. Telur 18 mengalami keretakan pada bagian cangkang sedangkan telur 19 dan telur 10 berat telur yang kurang dari 40gram sehingga kualitas embrio di dalam telur tidak berkembang secara baik.

6.2. Saran

Berdasarkan penelitian yang telah dilakukan, terdapat beberapa saran yang dapat diberikan untuk pengembangan penelitian selanjutnya, antara lain:

- Kriteria yang digunakan masih terbatas hanya pada empat kriteria (berat telur, usia telur, kebersihan cangkang dan ukuran telur). Penelitian selanjutnya disarankan agar menambah kriteria lain agar lebih meningkatkan akurasi dalam proses penyeleksian telur.
- Penggunaan sistem dengan lebih banyak sampel telur dari berbagai peternakan agar hasil pengujian lebih representatif dan bisa dijadikan

- standar umum dalam penentuan kelayakan telur tetas ayam.
- 3. Pengembangan ke *platform mobile* (android/ios) agar lebih memudahkan peternak dalam melakukan penilaian kapan saja dan dimana saja tanpa harus menggunakan komputer/laptop.

DAFTAR PUSTAKA

- [1] T. A. Lestari, A. Jumiono, M. Z. Fanani, and S. Akil, "Proses Pengolahan Telur Beku," *J. Ilm. Pangan Halal*, vol. 4, no. 1, pp. 35–39, 2022, doi: 10.30997/jiph.v4i1.9829.
- [2] J. T. Sains, A. M. Iksan, and R. Hariyanto, "KLASIFIKASI KELAYAKAN TELUR AYAM RAS (BROILER) MENGGUNAKAN METODE NAÏVE BAYES," vol. 2, no. 3, pp. 245–252, 2020.
- [3] M. A. Fadlilah, U. Pauziah, and V. Ramdhan, "SISTEM PENDUKUNG KEPUTUSAN METODE SAW PEMILIHAN KUALITAS TELUR AYAM RAS PADA AGEN TELOR 24," vol. 05, no. 03, pp. 646–655, 2024.
- [4] R. H. Saputra, W. Waziana, D. N. Sari, and P. A. Pratomo, "MOBILE DALAM PEMILIHAN KUALITAS TELUR PADA," vol. 8, pp. 21–31, 2025.
- [5] S. K. Moh. Fikri Yunus, Indyah Hartami Santi, "(Studi Kasus di CV . Senik Desa Suruhwadang Kabupaten Blitar)," vol. 6, no. 2, pp. 908–913, 2022.
- [6] A. A. A. Cirua and N. Zulkarnaim, "Implementasi Sistem Pendukung Keputusan (SPK) Pada Seleksi Proposal Penelitian Dan Pengabdian Kepada Masyarakat Menggunakan Metode Mod SAW," vol. 2, pp. 155–161, 2024.
- [7] Syafiatun ihsani luthfiyah and R. Candra Noor Santi, "Sistem Pendukung Keputusan (Spk) Penentuan Algoritma / Metode Untuk Penelitian Dengan Metode Simple Additive Weighting(Saw)," *J. Inform. dan Rekayasa Elektron.*, vol. 5, no. 2, pp. 173–180, 2022, doi: 10.36595/jire.v5i2.678.
- [8] D. P. Odelia, "PENERAPAN METODE WEIGHT PRODUCT PADA SISTEM PENDUKUNG KEPUTUSAN KARYAWAN TERBAIK," vol. 2, no. 3, pp. 910–920, 2025.
- [9] Muhammad Nurwegiono, "Pengembangan Aplikasi Mobile untuk Peningkatan Layanan Kesehatan di Klinik Menggunakan Metode Waterfall: Studi Kasus Klinik XYZ," *J. Penelit. Sist. Inf.*, vol. 2, no. 3, pp. 177–189, 2024, doi: 10.54066/jpsi.v2i3.2269.
- [10] L. Setiyani, "Desain Sistem: *Use case diagram* Pendahuluan," *Pros. Semin. Nas. Inov. Adopsi Teknol. 2021*, no. September, pp. 246–260, 2021, [Online]. Available: https://journal.uii.ac.id/AUTOMATA/article/vi

ew/19517

[11] K. Nistrina and L. Sahidah, "Unified Modelling Language (Uml) Untuk Perancangan Sistem Informasi Penerimaan Siswa Baru Di Smk Marga Insan Kamil," *J. Sist. Informasi, J-SIKA*, vol. 4, no. 1, pp. 17–23, 2022.