IN VITRO AND MOLECULAR DOCKING ANALYSIS OF NUTMEG EXTRACT ANTIBACTERIAL ACTIVITY AGAINST Propionibacterium acnes

Authors

  • Yasir Angga Saputra Cosmetic Engineering Program, Sumatra Institute of Technology https://orcid.org/0000-0003-1936-3787
  • Sari Indah Puspita Cosmetic Engineering Program, Sumatra Institute of Technology
  • Nurhayati Veni Putri Cosmetic Engineering Program, Sumatra Institute of Technology
  • Sholeha Aida Febina Cosmetic Engineering Program, Sumatra Institute of Technology

DOI:

https://doi.org/10.36423/pharmacoscript.v8i2.2107

Keywords:

nutmeg extract, Propionibacterium acnes, molecular docking, antibacterial activity, bioactive compounds

Abstract

This study investigated the antibacterial activity of nutmeg (Myristica fragrans Houtt.) extract against Propionibacterium acnes  through in vitro and molecular docking approaches. The nutmeg flesh was extracted using ultrasonication with 96% ethanol, yielding 8.21% extract. Phytochemical screening revealed the presence of alkaloids, flavonoids, tannins, and steroids. The antibacterial activity was evaluated using the microdilution method, determining Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of 0.5% and 1%, respectively. Molecular docking analysis was performed to understand the interaction between nutmeg's bioactive compounds and three essential Propionibacterium Acnes proteins: Sialidase (7LBV), lipase (5H6G), and Penicillin-Binding Protein 2 (3UPO). Among the tested compounds, myristicin showed the strongest binding affinity with 7LBV (-6.8 kcal/mol), while lignan exhibited notable interactions with 3UPO (-6.6 kcal/mol) and 5H6G (-5.9 kcal/mol). The molecular interactions were primarily stabilized through hydrophobic interactions and hydrogen bonding with specific amino acid residues. These findings suggest that nutmeg extract possesses significant antibacterial activity against Propionibacterium Acnes, potentially mediated through multiple molecular targets, supporting its development as a natural anti-acne ingredient.

Author Biography

Yasir Angga Saputra, Cosmetic Engineering Program, Sumatra Institute of Technology

Prodi Teknologi Kosmetik

References

Aloliqi, A. A. (2024). Towards identification of therapeutics against multi-infections and cancers causing Propionibacterium acnes : Molecular modeling and dynamics simulation investigation. Journal of Molecular Liquids, 415, 126373.

https://doi.org/10.1016/j.molliq.2024.126373

Arhin, R. E., Gordon, A., Nuhu, Y., Boakye, E. E., Owusu, I., Oppong-Mensah, J., & Alhassan, S. (2024). Physicochemical and Antibacterial Properties of Myristica fragrans and Syzygium aromaticum Methanolic Extract Soap Formulations. Journal of Chemistry, 2024(1), 2457296.

https://doi.org/10.1155/2024/2457296

Baihaqi, B., Nuraida, N., Fridayati, D., & Adam, K. (2023). Extraction of Nutmeg Oleoresin Using UAE (Ultrasound Assisted Extraction) Method. Jurnal Sains Pertanian (JSP), 7, 42–45. https://doi.org/10.51179/jsp.v7i2.1995

Dréno, B., Pécastaings, S., Corvec, S., Veraldi, S., Khammari, A., & Roques, C. (2018). Cutibacterium acnes (Propionibacterium acnes ) and acne vulgaris: A brief look at the latest updates. Journal of the European Academy of Dermatology and Venereology, 32, 5–14.

https://doi.org/10.1111/JDV.15043

Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical Screening and Antimicrobial Activity Evaluation of Selected Medicinal Plants in Ethiopia. Journal of Experimental

Pharmacology, 15, 51.

https://doi.org/10.2147/JEP.S379805

Farha, A. K., Yang, Q.-Q., Kim, G., Li, H.-B., Zhu, F., Liu, H.-Y., Gan, R.-Y., & Corke, H. (2020). Tannins as an alternative to antibiotics. Food Bioscience, 38, 100751.

https://doi.org/10.1016/j.fbio.2020.100751

Gajic, I., Kabic, J., Kekic, D., Jovicevic, M., Milenkovic, M., Mitic Culafic, D., Trudic, A., Ranin, L., & Opavski, N. (2022). Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics, 11(4), 427.

https://doi.org/10.3390/antibiotics11040427

Gozali, M. M., Kurniawati, Y., Devi, M., Bahar, E., Dewi, L., Yahya, Y. F., Rusmawardiana, Zulkarnain, S. D., & Kartowigno, S. (2023). Correlation between Antimicrobial Resistant Propionibacterium acnes and Severity of Acne Vulgaris: Findings from a Tertiary Hospital. Indian Journal of Dermatology, 68(4), 488. https://doi.org/10.4103/ijd.ijd_623_22

Gupta, A. D., Bansal, V. K., Babu, V., & Maithil, N. (2013). Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). Journal of Genetic Engineering and Biotechnology, 11(1), 25-31. https://doi.org/10.1016/j.jgeb.2012.12.001

Hulankova, R. (2024). Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro—A Review. Plants, 13(19), Article 19. https://doi.org/10.3390/plants13192784

Lee, Y. B., Byun, E. J., & Kim, H. S. (2019). Potential role of the microbiome in acne: A comprehensive review. Journal of Clinical Medicine, 8(7), 987. https://doi.org/10.3390/jcm8070987

Liu, P.F., Hsieh, Y.D., Lin, Y.C., Two, A., Shu, C.W. and Huang, C.M., 2015. Propionibacterium acnes in the pathogenesis and immunotherapy of acne vulgaris. Current Drug Metabolism, 16(4), pp.245-254. doi: 10.2174/1389200216666150812124801.

Lheure, C., Grange, P. A., Ollagnier, G., Morand, P., Désiré, N., Sayon, S., Corvec, S., Raingeaud, J., Marcelin, A. G., Calvez, V., Galliot, F., Dupin, N., & Khammari, A. (2016). TLR-2 recognizes Propionibacterium acnes CAMP factor 1 from highly inflammatory strains. PLoS ONE, 11(11), e0167237. https://doi.org/10.1371/journal.pone.0167237

Nakatsuji, T., Tang, D. C., Zhang, L., Gallo, R. L., & Huang, C. M. (2011). Propionibacterium acnes CAMP factor and host acid sphingomyelinase contribute to bacterial virulence: Potential targets for inflammatory acne treatment. PLoS ONE, 6(4), e14797. https://doi.org/10.1371/journal.pone.0014797

Nurhasanah, N. (2016). Antimicrobial Activity Of Nutmeg (Myristica fragrans Houtt) Fruit Methanol Extract Against Growth Staphylococcus aureus and Escherichia coli. Jurnal Bioedukasi, 2(1). https://doi.org/10.33387/BIOEDU.V2I1.61

Orabi, M., Abdulsattar, J. O., & Nasi, Z. O. (2022). Phytochemical Profile, Antimicrobial, Antioxidant Activity and Cyclooxygenase 2 Inhibitory Properties of Nutmeg (Myristica Fragrans) Seeds Extract. Egyptian Journal of Chemistry, 65(1), 317–326. https://doi.org/10.21608/ejchem.2021.78192.3831

Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A. and Varma, A.K., 2010. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PloS One, 5(8), p.e12029. https://doi.org/10.1371/journal.pone.0012029

Safutri, W., Karim, D. D. A., & Fevinia, M. (2022). Phytochemical Screening of Medicinal Plant Materials in Pringsewu Regency. Journal Pharmacy Aisyah, 1(1), Article 1.

Sharma, D., Misba, L., & Khan, A. U. (2019). Structure, function and inhibition of bacterial sialidases: A comprehensive insight. MedChemComm, 10(12), 1983-2003. https://doi.org/10.1039/c9md00206e

Shafiei, Z., Shuhairi, N. N., Yap, N. M. F. S., Sibungkil, C. A. H., & Latip, J. (2012). Antibacterial Activity of Myristica fragrans against Oral Pathogens. Evidence-Based Complementary and Alternative Medicine : eCAM, 2012, 825362. https://doi.org/10.1155/2012/825362

Tan, A. U., Schlosser, B. J., & Paller, A. S. (2018). A review of diagnosis and treatment of acne in adult female patients. International Journal of Women's Dermatology, 4(2), 56-71. https://doi.org/10.1016/j.ijwd.2017.10.006

Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B., Dhama, K., Ripon, M. K. H., Gajdács, M., Sahibzada, M. U. K., Hossain, M. J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/J.JIPH.2021.10.020

Vaithyanathan, P. (2024). Anti-acne Property of Octopus Skin Pigment, Xanthommatin An Insilico Evaluation. In Review.

https://doi.org/10.21203/rs.3.rs-5535357/v1

Wei, M., Yu, H., Guo, Y., Cheng, Y., Xie, Y., & Yao, W. (2021). Potent in vitro synergistic antibacterial activity of natural amphiphilic Sapindoside A and B against Cutibacterium acnes with destructive effect on bacterial membrane. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1863(11), 183699.

https://doi.org/10.1016/j.bbamem.2021.183699

Wei, M., Yu, H., Guo, Y., Cheng, Y., Xie, Y., & Yao, W. (2022). Synergistic combination of Sapindoside A and B: A novel antibiofilm agent against Cutibacterium acnes. Microbiological Research, 254, 126912.

https://doi.org/10.1016/j.micres.2021.126912

Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics, 10(3), 318. https://doi.org/10.3390/antibiotics10030318

Yasir, A. S., Marcellia, S., Wijaya, L. B., & Putri, T. R. (2021). Formulation and Activity Testing of Combination Gel of Aloe Vera Leaf Ethanol Extract (Aloe vera) and Basil Leaf (Ocimum sanctum L.) as Anti-Acne Agent Against Staphylococcus epidermidis Bacteria. Pharmacoscript, 4(1), 70–86.

Yuan, G., Guan, Y., Yi, H., Lai, S., Sun, Y., & Cao, S. (2021). Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Scientific Reports, 11(1), 10471.

https://doi.org/10.1038/s41598-021-90035-7

Zhang, A., Mu, H., Zhang, W., Cui, G., Zhu, J., & Duan, J. (2013). Chitosan coupling makes microbial biofilms susceptible to antibiotics. Scientific Reports, 3, 1–7.

https://doi.org/10.1038/srep03364

Downloads

Published

2025-08-31