OPTIMALISASI AKTIVITAS ANTIOKSIDAN NARINGENIN MELALUI SISTEM PENGHANTARAN NANOTRANSFERSOM

Authors

  • Sari Putri Rovita Departemen Farmasi, Fakultas Farmasi, Universitas Setia Budi, Surakarta, Indonesia
  • Kuncahyo Ilham Departemen Farmasi, Fakultas Farmasi, Universitas Setia Budi, Surakarta, Indonesia
  • Surnarni Titik Departemen Farmasi, Fakultas Farmasi, Universitas Setia Budi, Surakarta, Indonesia

DOI:

https://doi.org/10.36423/pharmacoscript.v8i1.2115

Keywords:

naringenin, nanopartikel, transfersom, antioksidan

Abstract

Naringenin sebagai agen antioksidan secara alami yang telah banyak di teliti, namun efektivitasnya terbatas disebabkan penyerapannya yang buruk karena sulit melewati membran sel. Transfersom diperkenalkan sebagai sistem penghantaran yang memiliki gugus hidrofilik dan hidrofobik sehingga mampu mengubah bentuk sehingga mudah melewati pori-pori dengan diameter yang jauh lebih kecil. Tujuan penelitian ini adalah mengoptimalkan aktivitas antioksidan naringenin melalui sistem penghantaran nanotransfersom. Nanotransfersom naringenin dibuat menggunakan metode hidrasi lapis tipis dan dikarakterisasi berdasarkan ukuran, indeks polidispersi partikel, zeta potensial, efisiensi penjebakan dan aktivitas antioksidan menggunakan metode DPPH. Berdasarkan hasil penelitian nanotransfersom naringenin mampu menjebak hingga 92,4% dengan ukuran partikel 62,6 nm, nilai PDI 0,209, potensi zeta −32,5 mV. Naringenin dalam nanotransfersom menunjukkan potensi 2 kali lebih baik sebagai antioksidan dibandingkan dengan naringenin dengan nilai IC50 naringenin 6.132 ± 0.325 dan transfersom naringenin adalah 3.739 ± 0.144. Hasil ini menunjukkan bahwa nanotransfersom naringenin dapat digunakan sebagai pembawa yang efektif untuk sediaan obat oral maupun topikal.

References

Ahmad, A., Prakash, R., Khan, M. S., Altwaijry, N., Asghar, M. N., Raza, S. S., & Khan, R. (2022). Enhanced Antioxidant Effects of Naringenin Nanoparticles Synthesized using the High-Energy Ball Milling Method. ACS Omega, 7(38), 34476–34484. https://doi.org/10.1021/acsomega.2c04148

Ahmad, N., Qamar, M., Yuan, Y., Nazir, Y., Wilairatana, P., & Mubarak, M. S. (2022). Dietary Polyphenols: Extraction, Identification, Bioavailability, and Role for Prevention and Treatment of Colorectal and Prostate Cancers. In Molecules (Vol. 27, Issue 9). MDPI. https://doi.org/10.3390/molecules27092831

Amit Kumer Biswas, Md Reazul Islam, & Zahid Sadek Choudhury. (2024). Nanotechnology based approaches in cancer therapeutics. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(4).

Andini, S., Jufri, M., & Djajadisastra, J. (n.d.). Formulasi dan Uji Penetrasi Sediaan Gel Transfersom yang Mengandung Kojyl 3 Amino Propil Fosfat sebagai Pencerah Kulit Formulation and Penetration Test of Gel Transfersome Containing Kojyl 3 Amino Propyl Phosphate as Skin Lightening.

Avadhani, K. S., Manikkath, J., Tiwari, M., Chandrasekhar, M., Godavarthi, A., Vidya, S. M., Hariharapura, R. C., Kalthur, G., Udupa, N., & Mutalik, S. (2017). Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Delivery, 24(1), 61–74. https://doi.org/10.1080/10717544.2016.1228718

Bhia, M., Motallebi, M., Abadi, B., Zarepour, A., Pereira-Silva, M., Saremnejad, F., Santos, A. C., Zarrabi, A., Melero, A., Jafari, S. M., & Shakibaei, M. (2021). Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics, 13(2), 291. https://doi.org/10.3390/pharmaceutics13020291

Chen, C., Jie, X., Ou, Y., Cao, Y., Xu, L., Wang, Y., & Qi, R. (2017). Nanoliposome Improves Inhibitory Effects of Naringenin on Nonalcoholic Fatty Liver Disease in Mice. Nanomedicine, 12(15), 1791–1800. https://doi.org/10.2217/nnm-2017-0119

Chen, S., Hanning, S., Falconer, J., Locke, M., & Wen, J. (2019). Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. European Journal of Pharmaceutics and Biopharmaceutics, 144, 18–39. https://doi.org/10.1016/j.ejpb.2019.08.015

Gera, S., Talluri, S., Rangaraj, N., & Sampathi, S. (2017). Formulation and Evaluation of Naringenin Nanosuspensions for Bioavailability Enhancement. AAPS PharmSciTech, 18(8), 3151–3162. https://doi.org/10.1208/s12249-017-0790-5

Kuncahyo, I., Resmi, J. K., & Muchalal, M. (2021). Pengaruh Perbandingan Tween 80 dan Fosfatidilkolin Pada Formulasi Transfersom Naringenin dan Kajian Permeasi Berbasis Hidrogel. JPSCR: Journal of Pharmaceutical Science and Clinical Research, 6(3), 327. https://doi.org/10.20961/jpscr.v6i3.50738

Lather, A., Sharma, S., & Khatkar, A. (2020). Naringenin derivatives as glucosamine-6-phosphate synthase inhibitors: synthesis, antioxidants, antimicrobial, preservative efficacy, molecular docking and in silico ADMET analysis. BMC Chemistry, 14(1), 41. https://doi.org/10.1186/s13065-020-00693-3

Liying Wang. (2021). Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme. Biomedicine and Pharmacotherapy, 138.

Maity, S., & Chakraborti, A. S. (2020). Formulation, physico-chemical characterization and antidiabetic potential of naringenin-loaded poly D, L lactide-co-glycolide (N-PLGA) nanoparticles. European Polymer Journal, 134, 109818. https://doi.org/10.1016/j.eurpolymj.2020.109818

Nurkhasanah, & Tedjo Yuwono. (2015). The Development of Chitosan Nanoparticles From Hibiscus Sabdariffa L Calyx Extract From Indonesia And Thailand. IJPSR, 6(5), 1855–1861.

Sandhu, P. S., Kumar, R., Beg, S., Jain, S., Kushwah, V., Katare, O. P., & Singh, B. (2017). Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of tamoxifen and naringenin: Systematic approach for improved breast cancer therapeutics. Nanomedicine: Nanotechnology, Biology and Medicine, 13(5), 1703–1713. https://doi.org/10.1016/j.nano.2017.03.003

Stabrauskiene, J., Kopustinskiene, D. M., Lazauskas, R., & Bernatoniene, J. (2022). Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities. Biomedicines, 10(7), 1686. https://doi.org/10.3390/biomedicines10071686

Tsai, M.-J., Huang, Y.-B., Fang, J.-W., Fu, Y.-S., & Wu, P.-C. (2015). Preparation and Characterization of Naringenin-Loaded Elastic Liposomes for Topical Application. PLOS ONE, 10(7), e0131026. https://doi.org/10.1371/journal.pone.0131026

Wang, Y., Wang, S., Firempong, C. K., Zhang, H., Wang, M., Zhang, Y., Zhu, Y., Yu, J., & Xu, X. (2017). Enhanced Solubility and Bioavailability of Naringenin via Liposomal Nanoformulation: Preparation and In Vitro and In Vivo Evaluations. AAPS PharmSciTech, 18(3), 586–594. https://doi.org/10.1208/s12249-016-0537-8

Wu, P.-S., Li, Y.-S., Kuo, Y.-C., Tsai, S.-J. J., & Lin, C.-C. (2019). Preparation and Evaluation of Novel Transfersomes Combined with the Natural Antioxidant Resveratrol. Molecules, 24(3), 600. https://doi.org/10.3390/molecules24030600

Zheng, Y.-Z., Deng, G., Guo, R., Chen, D.-F., & Fu, Z.-M. (2019). DFT Studies on the Antioxidant Activity of Naringenin and Its Derivatives: Effects of the Substituents at C3. International Journal of Molecular Sciences, 20(6), 1450. https://doi.org/10.3390/ijms20061450

Zobeiri, M., Belwal, T., Parvizi, F., Naseri, R., Farzaei, M. H., Nabavi, S. F., Sureda, A., & Nabavi, S. M. (2018). Naringenin and its Nano-formulations for Fatty Liver: Cellular Modes of Action and Clinical Perspective. Current Pharmaceutical Biotechnology, 19(3), 196–205.

Downloads

Published

2025-02-24