Formulasi Biopestisida Trichoderma asperellum Samuels, Liecfk & Nirenberg

Authors

  • Lukita Devy Pusat Teknologi Produksi Pertanian Badan Pengkajian dan Penerapan Teknologi
  • Yuda Purwana Roswanjaya Pusat Teknologi Produksi Pertanian Badan Pengkajian dan Penerapan Teknologi
  • Nur Alfi Saryanah Pusat Teknologi Produksi Pertanian Badan Pengkajian dan Penerapan Teknologi
  • Ahmad Suhendra Pusat Teknologi Produksi Pertanian Badan Pengkajian dan Penerapan Teknologi
  • Ade Lia Putri Pusat Penelitian Biologi Lembaga Ilmu Pengetahuan Indonesia

DOI:

https://doi.org/10.36423/agroscript.v2i2.569

Abstract

Biopestisida dengan efektifitas dan efisiensi tinggi akan mendukung keberhasilan praktek proteksi tanaman di lapangan.  Tahapan yang cukup penting dalam produksi biopestisida berkualitas adalah formulasi.  Penelitian ini bertujuan untuk mempelajari formulasi biopestisida berbahan dasarTrichoderma asperellum yang diisolasi dari tanah di PTPN XII Kediri, Jawa Timur.  Proses formulasi dilakukandengan seleksi substrat padat untuk produksi konidia, uji konsistensi substrat, uji scaling up produksi substrat dan uji daya simpan biopestisida.  Seleksi substrat dilakukan terhadap lima kombinasi substrat padat yaitu beras 100%; beras:jagung (50%:50%); beras:jagung (75%:25%); beras:jagung (25%:75%) dan jagung 100%.  Hasil menunjukkan bahwa beras 100% merupakan substrat terbaik untuk produksi konidia T. asperellum (3 x 109 konidiag-1).  Uji konsistensi beras 100% sebagai substrat dilakukan dalam dua tahap yaitu dalam volume sama dengan uji seleksi dan dalam volume lebih besar sebagai uji scaling up.  Hasil menunjukan terdapat konsistensi antara kedua uji tersebut dengan uji seleksi (7,88 x 109 dan 7,95 x 109 konidiag-1).  Uji daya simpan T. asprellum pada beras 100% menunjukkan stabilitas jumlah konidia (≥ 105konidia g-1) sampai 105 hari setelah simpan pada suhu ruang.  Oleh karena itu, formulasi T. asprellum sebagai biopestisida dapat menggunakan beras 100% sebagai substrat.

References

Arbianto, P. (1995). The microbial ecologycal approach in the traditional fermentation process. Prosiding Simposium Sehari Pengembangan Industri Makanan dari Kedelai. Jakarta, 23 September 1995.

Atanasova, L. (2014). Ecophysiology of Trichoderma in genomic perspective. In Gupta et al. (Eds). Biotechnology and Biology of Trichoderma. pp. 25-40. Amsterdam, The Netherlands: Elsevier.

Casas-Flores, S., Herrera-Estrella, A., Mukherjee, P., Horwitz, B., & Singh, U. (2013). The influence of light on the biology of Trichoderma. In Mukherjee et al. (Eds.). Trichoderma: Biology and Applications. pp 43-66. CABI.

Cumagun, C. J. R. (2014). Advances in formu-lation of Trichoderma for biocontrol. In Gupta et al. (Eds). Biotechnology and Biology of Tricho¬derma. pp. 527-531. Amsterdam, The Netherlands: Elsevier.

de los Santos-Villalobos, S., Guzmán-Ortiz, D. A., Gómez-Lim, M. A., Délano-Frier, J. P., de-Folter, S., Sánchez-García, P., & Peña-

Cabriales, J. J. (2013). Potential use of Trichoderma asperellum (Samuels, Liech-feldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biological Control, 64(1), 37-44.

El_Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. The Plant Pathology Journal, 31(1), 50.

Griffin, D. H. (1996). Fungal physiology. John New York, USA: Wiley & Sons.

Jin, X., & Custis, D. (2011). Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated tem-peratures. Biological Control, 56(2), 202-208.

Kakvan N., Heydari A., Zamanizadeh H.R., Re-zaee S., Nraghi L. (2013). Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Protection, 53 (1), 80–84.

Kumar, G., & Sarma, B.K. (2016). Ecofriendly management of soil-borne plant patho-gens through plant growth promoting rhizobacteria. SATSA Mukhapatra-An¬nual Technical Issue, (20), 167-171.

Li, Y., Sun, R., Yu, J., Saravanakumar, K., & Chen, J. (2016). Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian journal of microbiology, 56(3), 318-327.

Mahdizadehnaraghi, R., Heydari, A., Zamani-zadeh, H. R., Rezaee, S., & Nikan, J. (2015). Biological control of garlic (Allium) white rot disease using antagonistic fungi-based bioformulations. Journal of Plant Protection Research, 55(2), 136-141.

Mbarga, J. B., Ten Hoopen, G. M., Kuaté, J., Adi-obo, A., Ngonkeu, M. E. L., Ambang, Z., ... & Begoude, B. A. D. (2012). Trichoderma asperellum: A potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. Crop Pro-tection, 36, 18-22.

Muslim, A. (2019). Pengendalian hayati pato-gen tanaman dengan mikroorganisme antagonis. Palembang, Indonesia: Unsri Press.

Natalia, A. G., Aeny, T. N., & Prasetyo, J. (2014). Uji keefektifan Trichoderma Spp. dengan bahan campuran yang berbeda dalam menghambat pertumbuhan Sclerotium Rolfsii penyebab penyakit rebah kecam-bah pada kacang tanah. Jurnal Agrotek Tropika, 2(3).

Oliveira, D. G. P., Pauli, G., Mascarin, G. M., & Delalibera, I. (2015). A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products. Journal of microbiological methods, 119, 44-52.

Rivera-Méndez, W., Obregón, M., Morán-Diez, M. E., Hermosa, R., & Monte, E. (2020). Trichoderma asperellum biocontrol ac-tivity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biological Control, 141, 104145.

Rosmana, A., Kuswinanti, T., Asman, A., Mandy, Y. I., Muhayang, M. T., & Kesia, A. M. (2018). Composted plant residues im-prove control capability of Trichoderma asperellum against vascular streak die-back disease on cacao. Int. J. Agric. Biol, 20, 1795-1800.

Samavat S., Heydari A., Zamanizadeh H.R., Re-zaee S., Alizadeh Aliabadi A. (2014). A comparison between Pseudomonas aure-ofaciens (chlororaphis) and P. fluorescens in biological control of cotton seedling damping-off disease. Journal of Plant Pro-tection Research, 54 (2), 115–121.

Singh, A., Sarma, B. K., Singh, H. B., & Upadh-yay, R. S. (2014). Trichoderma: a silent worker of plant rhizosphere. In Gupta et al. (Eds). Biotechnology and Biology of Tricho¬derma. pp. 533-542. Amsterdam, The Netherlands: Elsevier.

Singh, A., Srivastava, S., & Singh, H. B. (2007). Effect of substrates on growth and shelf life of Trichoderma harzianum and its use in biocontrol of diseases. Bioresource technology, 98(2), 470-473.

Singh, B. N., Singh, A., Singh, S. P., & Singh, H. B. (2011). Reprogramming of oxidant and antioxidant metabolites in root apoplast of sunflower by Trichoderma harzianum NBRI 1055 against Rhizoctonia solani. Eur. J. Plant Pathol, 131, 121-134.

Soe, K. T., & De Costa, D. M. (2012). Develop-ment of a spore-based formulation of microbial pesticides for control of rice sheath blight. Biocontrol Science and Technlogy, 22(6), 633-657.

Suwahyono, U. (2010). Biopestisida, cara membuat dan petunjuk penggunaan. Jakarta, Indonesia: Penebar Swadaya.

USDA. (2016). Nutrient data laboratory. United States Department of Agriculture [Internet]. https://ndb.nal.usda.gov// [Diakses 20 Oktober 2020].

Wahyudi, P. (2008). Enkapsulasi propagul jamur entomopatogen Beauveria bassi¬ana menggunakan alginat dan pati ja¬gung sebagai produk mikoinsektisida. Jurnal Ilmu Kefarmasian Indonesia, 6(2), 51-56.

Waites, M. J., Morgan, N. L., Rockey, J. S., & Hig¬ton, G. (2009). Industrial microbiology: an introduction. New Jersey, USA: Wiley Blackwell.

Wang, C., & Zhuang, W. Y. (2019). Evaluating effective Trichoderma isolates for bio-control of Rhizoctonia solani causing root rot of Vigna unguiculata. Journal of Integ¬rative Agriculture, 18(9), 2072-2079.

Wijaya I, Oktarina, Virdanuriza M. (2011). Pembiakan massal jamur Trichoderma spp. pada beberapa media tumbuh sebagai agen hayati pengendalian penyakit tanaman [Internet]. Agritrop Jurnal Ilmu-ilmu Pertanian, 87-92. http://digilib.unmuhjember.ac.id [Diakses 20 Oktober 2020]

Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., ... & Chen, J. (2017). Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evalua-tion of its biocontrol efficacy. PloS one, 12(6), e0179957.

Downloads

Published

2020-11-26

How to Cite

Devy, L., Roswanjaya, Y. P., Saryanah, N. A., Suhendra, A., & Putri, A. L. (2020). Formulasi Biopestisida Trichoderma asperellum Samuels, Liecfk & Nirenberg. AGROSCRIPT: Journal of Applied Agricultural Sciences, 2(2), 91–104. https://doi.org/10.36423/agroscript.v2i2.569

Issue

Section

Articles

Most read articles by the same author(s)